
Formal Security Analysis

with Interacting State Machines

David von Oheimb and Volkmar Lotz
Siemens AG, Corporate Technology, D-81730 Munich

{David.von.Oheimb|Volkmar.Lotz}@siemens.com

Abstract

We introduce the ISM approach, a framework for modeling and ver-
ifying reactive systems in a formal, even machine-checked, way. The
framework has been developed for applications in security analysis. It
is based on the notion of Interacting State Machines (ISMs), sort of
high-level Input/Output Automata. System models can be defined and
presented graphically using the AutoFocus tool. They may be type-
checked and translated to a representation within the theorem prover
Isabelle or defined directly as Isabelle theories. The theorem prover
may be used to perform any kind of syntactic and semantic checks,
in particular semi-automatic verification. We demonstrate that the
framework can be fruitfully applied for formal system analysis by two
classical application examples: the LKW model of the Infineon SLE66
SmartCard chip and Lowe’s fix of the Needham-Schroeder Public-Key
Protocol.

1 Introduction

1.1 Motivation

In industrial environments, there is an increased demand for rigorous anal-
ysis of security properties of systems. Due to restrictions imposed by the
application domain, the system environment, and business needs, new se-
curity mechanisms and architectures have to be invented frequently, with
time-to-market pressure and intellectual property considerations obstruct-
ing the chance to gain confidence by exposing a proposed solution to the
security community (which has been shown to be appropriate for crypto-
graphic algorithm assessment). Formal analysis of suitable abstractions of
systems has instead turned out to be extremely helpful in reasoning about a
system’s security, since the mathematical precision of the arguments allows
for maximal confidence in the results obtained and, thus, in the security of
the system being modeled.
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The importance of formal analysis – on top of open review – in security
assessment is, for instance, reflected by the requirements stated for high
assurance levels of criteria like ITSEC [ITS91] and CC [CC99], which in-
clude formal security modeling and formal system development steps, and
the achievements of the security protocol verification community, which dis-
covered flaws in protocols that failed to be detected by informal approaches.

However, even in a formal setting it is easy to make – minor and some-
times even major – mistakes: undefined expressions, type mismatches, in-
consistent specifications, missing evidence in proofs, false conclusions etc.
Therefore, pure pen-and-paper formalizations cannot be considered fully re-
liable. Machine-checking of formal objects and structures has to be employed
in order to significantly reduce the occurrence of such mistakes. Machine
support additionally gives the opportunity to represent and deal with for-
mal objects – both specifications and proofs – in an easy-to-comprehend
way, which is a prerequisite for introducing formal approaches in an indus-
trial environment characterized by time and cost restrictions.

1.2 Goals

A framework for formal security analysis particularly suited for industrial
use should enjoy the following properties:

Expressiveness. It should be possible to describe any typical security sen-
sitive computation, storage, and communication systems in an abstract
way. This requires in particular the notions of state transformation,
concurrency and message passing.

Flexibility. Since IT systems and their security threats evolve quickly, the
models produced within the framework should be easily adaptable and
extendable as necessary to reflect the changes.

Simplicity. Modeling a system, stating its properties and proving them
should require as little expertise and time as possible while maintaining
the rigor of a fully formal approach.

Graphical capabilities. System models should be representable as dia-
grams that give a good overview of the system structure and a quick
intuition about its behavior.

Maturity of the semantics. The semantic foundation of the framework
should be well-developed, supporting in particular modular refine-
ment.

Availability of tools. The framework should be built from existing widely
available (open-source) software like editors and proof tools and require
at most minor modifications or extensions to them.
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1.3 Related Work

The IOA Language and Toolset [GL98, Kay01] is a framework for analyzing
computational processes with aims very similar to ours. It consists of a spec-
ification language and tool support for simulation, theorem proving, model
checking, and code generation, where by now the simulation aspect is de-
veloped most and theorem proving support is limited to PVS. Its semantic
foundation is the notion of I/O Automata (IOAs) [LT89] modeling asyn-
chronous distributed computation with synchronous communication. Since
the notion is based on transition systems augmented by communication
primitives (rather than e.g. a process algebra augmented by local compu-
tation primitives), it is fairly easy to understand. It is equipped with a
well-developed meta theory supporting refinement and compositional rea-
soning. System properties, both safety and lifeness ones, may be described
using temporal logics and proved by model checking and interactive theorem
proving.

The only — but severe — drawback of IOAs from our perspective, in
particular when modeling system security in an abstract way, is that their
interaction scheme is rather low-level: buffered communication has to be
modeled explicitly, and transitions involving several related input, internal
processing and output activities cannot be expressed atomically. Instead,
each high-level transition has to be split into multiple low-level transitions,
and between these, any number of further input events may take place due
to the input-enabledness of IOAs. The solution to this problem is to add
extra structure, essentially by interpreting parts of the local state of an
automaton as input/output buffers. Our notion of ISMs, introduced in
[Ohe02a], provides for that.

A further related work that provided inspiration for our framework is
AutoFocus [HSSS96] – see also §2.2. Even though developed primarily for
modeling and verifying functional properties of embedded systems, it is used
also for the securiy analysis of general distributed systems [WW01, JW01].

Other related approaches combine state-oriented and message-oriented
description methods, for example translating CSP to B [But99] or Z to CSP
[Fis00]. The drawback of such hybrids is that the user has to deal with
two different non-trivial formalisms. Moreover, theorem proving support
respecting the structure of the mixed-style specifications seems not to be
available.

2 Preliminaries

In this section, we briefly introduce the two software tools we rely on and
comment on their suitability for the ISM approach.
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2.1 Isabelle/HOL

Isabelle [Pau94] is a generic theorem prover that has been instantiated to
many logics, in particular the very practical Higher-Order Logic (HOL).
Isabelle/HOL [PNW+] is a predicate logic based on the simply-typed λ-
calculus and thus in a sense combines logical and functional programming.
Being quite expressive and supporting automatic type inference, it is the
most important and best supported logic of Isabelle. The lack of dependent
types introduces a minor nuisance for applications like ours: for each system
modeled there is a single type of message contents into which all message
data has to be injected, and analogously for the local states of automata.

Proofs are conducted primarily in an interactive fashion where automatic
and semi-automatic methods are available to tackle the routine parts. The
Isabelle system is well-documented and well-supported, is freely available
(including sources) and comes with the excellent user interface ProofGen-
eral [AGKS99]. We consider it the most flexible and mature verification
environment available. Using Isabelle/HOL, security properties can be ex-
pressed easily and adequately and verified with powerful proof methods.

2.2 AutoFocus

AutoFocus [HSSS96] is a freely available specification and simulation tool
for distributed systems. Components and their behavior are specified by a
combination of system structure diagrams (SSDs), state transition diagrams
(STDs) and auxiliary data type definitions (DTDs). Their execution can be
visualized using extended event traces (EETs). Various back-ends includ-
ing code generators and interfaces to model checkers may be acquired by
purchase from Validas [S+].

We employ AutoFocus for its strengths concerning graphical design and
presentation, which is important when setting up models in collaboration
with clients (where strong familiarity with formal notations cannot be as-
sumed), when documenting our work and publishing its results. For abstract
security modeling, there are currently two problems. First, expressiveness is
limited concerning the type system and the handling of underspecification.
These weaknesses are going to be removed in the near future. Second, due
to the original emphasis of AutoFocus on embedded systems, the underlying
semantics is still clock-synchronous. In contrast, for the most of our appli-
cations, in particular communication protocols, an asynchronous (buffered)
semantics is more adequate, which is under consideration also for future ver-
sions of AutoFocus. Using an alternative semantics implies that we cannot
make use of the simulation, code generation and model checking capabilites
of current AutoFocus and its back-ends. Yet this is not a real obstacle for
us since we are interested mainly in its graphic capabilities and the offered
specification syntax is general enough to cover also our deviating semantics.
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3 The ISM approach

We first introduce the core of our modeling and verification framework,
viz. ISMs, and then give some general comments how they are handled by
AutoFocus and Isabelle.

3.1 Interacting State Machines

An Interacting State Machine (ISM) is an automaton whose state transitions
may involve multiple input and output simultaneously on any number of
ports. As the name suggests, the key concepts of ISMs are states (and in
particular the transitions between them) and interaction. By interaction we
mean explicit buffered communication via named ports, where on each of
them one receiver listens to possibly multiple senders. A system consists of
the parallel composition of any number of ISM components where the state
of the whole system is essentially the Cartesian product of the states of its
components.

The state of an ISM consists of the local state and its input buffers.
The local state may have arbitrary structure but typically is the Cartesian
product of a control state which is of finite type, and a data state that
typically is a record of named fields. Transitions between states may be
nondeterministic and can specified in any relational style. Thus the user has
the choice to define them in an operational (i.e., executable) or axiomatic
(i.e., property-oriented) fashion or a mixture of the two.

Figure 1: ISM structure

Each ISM declares two sets of port names, one for input and the other for
output. The local input buffers are a family of unbounded FIFOs indexed by
port names. Input of individual messages is triggered by any ISM and cannot
be blocked, i.e. may occur at any time, appending the received value to the
corresponding FIFO. Values stored in the input buffers may be processed
by the ISM when it is ready to do so. This is done in a transition specified
as follows: under a given precondition, the ISM consumes as much input
from the buffers as appropriate, makes a transition of the local state, and
produces output values at its discretion. These values are forwarded to the
input buffers of all ISMs listening to the respective port, which may include
feedback to the current component.
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Each ISM has a single1 initial state with empty input buffers. The execu-
tion of a system is a finite (but unbounded) sequence of nondeterministically
interleaved steps of any of its components. Finiteness implies that we can
handle safety, but not liveness properties. Transitions of different ISMs are
related only by the causality wrt. the messages interchanged. Execution gets
stuck when there is no component that can perform any step. As typical for
reactive systems, there is no built-in notion of final or “accepting” states.

The representation of ISMs and their semantics consists of several layers.
Its details, as well as a translation to IOAs, may be found in [Ohe02a].

3.2 AutoFocus representation

By design, ISMs have almost the same structure as the automata definable
with AutoFocus, and thus we can use AutoFocus as a graphical front-end
to our Isabelle implementation.

In a typical application of our framework, ISMs are first “painted” using
AutoFocus, saved in the so-called Quest file format, and then translated into
suitable Isabelle theory files by a tool program.

3.3 Isabelle representation

ISMs can be defined in special sections of Isabelle theories. This abstract
(and almost semantics-independent) representation has essentially a one-to-
one correspondence to the AutoFocus representation. As the cases studies
below show, the structure of this section is almost self-explanatory. The for-
mal definition of both the syntax and the semantics of ISMs in Isabelle/HOL
is given in [Ohe02a].

4 LKW Model for the Infineon SLE66

We give an improvement of the LKW model for the Infineon SLE66 Smart-
Card processor. We demonstrate that, with the ISM approach, transition
systems can be adequately modeled and their security properties stated and
proven.

The LKW model [LKW00] is one of the first formal models for secu-
rity properties of hardware chips. It has been used successfully within the
security evaluation process for the SLE66 on ITSEC level E4 and the corre-
sponding Evaluation Assurance Level 5 (semiformally designed and tested,
which includes a formal security model) [CC99]. Recently, a slight extension
was introduced [OLW02] in order to reflect additional application-oriented
security objectives as defined in the SmartCard IC Platform Protection Pro-
file [AETS01].

1If a non-singleton set of initial states is required, these may be simulated by sponta-
neous nondeterministic transitions originating from a single dummy initial state.
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The LKW model gives an abstract system model for the SLE66 based
on an ad-hoc automaton formalism, formalizes the security requirements in
terms of properties of automaton runs and proves that the system meets the
given requirements. All this is done as a pen-and-paper work, i.e. without
tool assistance. Thus it is inevitable that the model contains many (mostly
minor) syntactical, typographical and semantical slips as well as type er-
rors, but also omissions like missing assumptions and incomplete proofs.
Therefore it was desirable to formalize the model in a machine-checked way,
applying a well-developed meta theory. Using ISMs, the LKW model can
be represented adequately, including some improvements.

4.1 AutoFocus Diagrams

On the abstract level of the LKW model, the system architecture of the
SLE66 is rather trivial: there is one component with one input port named
In and one output port named Out, as depicted by Figure 2. The data state
of the component consists of two stores mapping names of functions and
data objects to corresponding values.

Figure 2: SLE66 System Structure Diagram

Much more involved is the structure of the state transitions. There are
four control states corresponding to the phases of the SLE66 life cycle:

Phase 0 : construction of the chip

Phase 1 : upload of Smartcard Embedded Software, personalization

Phase 2 : normal usage

Phase Error : locked mode from which there is no escape

In order to keep the state transition diagram clear, Figure 3 contains
all control states and transitions, but instead of showing the preconditions,
inputs, outputs, and changes to the data state, we just label the transitions
with the names of the corresponding transition rules. Part of the rules are
described in detail in the next subsection. Here we give an informal general
description of the transitions.
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Figure 3: SLE66 State Transition Diagram

R0.0 thru R0.4 describe the execution of functions in the initial phase 0.
Only the processor manufacturer is allowed to invoke functions in this
phase and the required function must be enabled.

R0.0 states that if the function belongs to class FTest0 and the correspond-
ing test succeeds, phase 1 will be entered, and the test functions of that
class are disabled.

R0.1 describes a shortcut leaving out phase 1: if the function belongs to
class FTest1 and the test succeeds, phase 2 will be entered, and all
test functions are disabled.

R0.2 states that if a test fails, the system will enter the error state.
R0.3 models the successful execution of any other (enabled) function, in

which case the function may change the chip state and yield a value.
R0.4 states that in all remaining cases of function execution the chip re-

sponds with No and its state is unchanged.
R1.1 thru R1.4 describe the execution of functions in the upload phase 1

analogously to R0.1 thru R0.4.
R2.1 and R2.2 describe the execution of functions in the usage phase 2

analogously to R0.3 and R0.4.
R3.1 and R3.2 describe the execution of functions in the error phase anal-

ogously to R0.3 and R0.4, except that the only function allowed to be
executed in this phase is chip identification.

R4.1 and R4.2 describe the effects of a specific operation used for upload-
ing new (operating system and application) functionality on the chip.
This must be done by subjects trusted by the processor manufacturer
and is allowed only in phase 1.

R4.1 describes the admissible situations, and
R4.2 describes all other cases.

8



R5.1 thru R5.3 describe the effects of attacks. Any attempts to tamper
with the chip and to read security-relevant objects via physical probing
on side channels (by mechanical, electrical, optical, and/or chemical
means), for example differential power analysis or inspecting the sili-
con with a microscope, are modeled as a special “spy” input. Note that
modeling physical attacks in more detail is not feasible because this
would require a model of physical hardware. In particular, the con-
ditions (and related mechanisms) under which the processor detects a
physical attack is beyond the scope of the model.

R5.1 describes the innocent case of reading non-security-relevant objects in
any regular phase, which actually reveals the requested information.

R5.2 describes the attempt to reading security-relevant objects in any reg-
ular phase. The chip has to detect this and enters the error phase,
while the requested object may be revealed or not. This concept is
called “destructive reading”: one cannot rule out that attacks may
reveal information even about security-relevant objects, but after the
first of any such attacks, the processor hardware will be “destroyed”,
i.e. cannot be used regularly.

R5.3 states that in the error phase no (further) information is revealed.

4.2 Isabelle Theory

Next we give the Isabelle/HOL representation of the SLE66 model. For lack
of space, of course we can show only the most essential definitions and a
very small selection of the transition rules. Yet we do describe the slight
extension mentioned above. For a detailed formal description of the LKW
model see [LKW00]. The full Isabelle definitions are contained in [Ohe02b].

Objects stored on the chip may be either functions or data and are
referred to by object names:

datatype on = F fn | D dn

Objects are classified as security-relevant (demanding secrecy and in-
tegrity) by including their names in the sets F_Sec or D_Sec, whose union is
called Sec. In order to meet the additional requirements of [AETS01], the
domain of security relevant functions F_Sec of the original LKW model has
been refined to the disjoint union of F_PSec and F_ASec, which control the
protection of the processor and application functionality, respectively.

The four control states of the SLE66 are defined as

datatype ph = P0 | P1 | P2 | Error

The data state consists of two fields, a function store and a data store:

record data =

valF :: "fn ; val"

valD :: "dn ; val"
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The initial data state is declared but not actually defined. This is a
typical example of underspecification, an important modeling technique.

const s0 :: data

We need only two port names, one for input and one for output:

datatype interface = In | Out

Possible input to the chip consists of either the two kinds of regular input
messages (modeling function execution and load commands to the SLE66),
or the Spy operation. The chip may respond with a value or a status message
indicating success or failure.

datatype message =

Exec sb fn | Load sb fn val | Spy on

| Val val | Ok | No

The subjects sb performing regular operations identify themselves to the
chip via physical means. The actual authentication mechanism, as well as
many other implementation details, is beyond the scope of this article.

Having defined its various parameters, we can now give the new ism
theory element that specifies the SLE66 model:

ism SLE66 =
ports interface

inputs "{In}"

outputs "{Out}"

messages message

state
control P0 :: ph

data s0 :: data

transitions

R0.0: P0 -> P1

pre "f ∈ fct s∩FTest0", "test f s"

in In "[Exec Pmf f]"

out Out "[Ok]"

eff "valF := valF sb-FTest0"

Rule R0.0 specifies execution of a test function f by the processor manufac-
turer Pmf from the initial phase P0 : if the test is successful then the SLE66
enters the next phase P1, disables the test functions FTest0, and answers
with Ok. This rule is typical for interactions with the SLE66 in the sense
that a single input triggers a single output. Note that the direct relation
of input and output is expressed easily using ISMs, whereas using IOAs,
two transitions would be required whose relation would be cumbersome to
express and to use during verification.
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R5.2: ph -> Error

pre "ph 6= Error", "oname ∈ Sec",

"v ∈ {[],[Val (the (val s oname))]}"

in In "[Spy oname]"

out Out "v"

eff "valF := fs, valD := ds"

Rule R5.2 specifies the typical reaction of the SLE66 upon attacks trying
to read (the representation of) a secret object: The desired value may be
output or not, but in any case the Error phase is reached. Note that R5.2 is a
generic transition from any regualar phase to the Error phase. Furthermore,
two sorts of nondeterminism are involved: v denotes either the empty output
or the singleton output giving the desired value, and the attack may corrupt
the function and data stores arbitrarily.

In contrast to the original LKW model, the Load operation may upload
not only non-security-relevant functions but also functions of the application
security domain, as long as they are not overwritten:

R4.1: P1 -> P1

pre "f ∈ F_NSec ∪ (F_ASec - fct s)"

in In "[Load Pmf f v]"

out Out "[Ok]"

eff "valF := valF s(f 7→v)"

All remaining transition rules and further details on the system model
may be found in [LKW00] and [Ohe02b].

4.3 Properties

The original security objectives for the SLE66 were stated as follows.

SO1. “The hardware must be protected against unauthorised disclosure of
security enforcing functionality.”

SO2. “The hardware must be protected against unauthorised modification
of security enforcing functions.”

SO3. “The information stored in the processor’s memory components must
be protected against unauthorised access.”

SO4. “The information stored in the processor’s memory components must
be protected against unauthorised modification.”

SO5. “It may not occur that test functions are executed in an unauthorised
way.”

Later, an additional requirement concerning the confidentialiy and integrity
of Smartcard Embedded Software, which is not part of the security enforcing
functionality, has been added [AETS01, §4.1].
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Having defined the SLE66 system model, these informal statements can
now be expressed formally as predicates on the system behavior, describing
unambiguously and in detail which states may be reached under which cir-
cumstances, which data may be modified, and which output may appear on
the output channel.

After formalizing the security objectives, it is natural to ask if the chip
behavior, as specified in the system model, actually fulfills these require-
ments. The corresponding proofs have been conducted first using pen and
paper, as reported in [LKW00]. Within the ISM framework, we meanwhile
have verified these properties even mechanically (and thus with maximal
reliability) using Isabelle.

Due to the abstract specification style where the semantics of parts of
the chip functionality is not fully specified, it turns out that in order to prove
the properties, a few general axioms are required. These assert for example
that security-relevant functions do not modify security-relevant functions:

Axiom1: "f∈fct s∩F_Sec =⇒ valF (change f s)bF_Sec = valF sbF_Sec"

In comparison to the version of this axiom in the original model, the scope
of functions f has been extended from “initially available” to “security-
relevant”, reflecting the changes to rule R4.1. Part of the lemmas as well as
the formalized security objective FSO2.1 change accordingly:

FSO21: " [[((ib,(ph,s)),p,(ib’,(ph’,s’))) ∈ Trans; ph’ 6= Error;

g ∈ fct s∩fct s’∩F_Sec ]] =⇒ valF s’ g = valF s g"

The proof of this property is — as usual — by induction on the construction
of all runs the SLE66 ISM can perform, which boils down to a case distinction
over all possible transitions. Most cases are trivial except for those where
function execution may change the stored objects, which are described by the
rules R0.3, R1.3, and R2.1. Here an argumentation about the invariance of
security-relevant functions g is needed, which follows easily from Axiom1 and
Axiom2 stating the analogous property for non-security-relevant functions f.

The third (and last) axiom introduced in the LKW model states that in
phase 2, a non-security-relevant function may not “guess” or (accidentally)
reveal security-relevant information.

When machine-checking the proofs contained in [LKW00] with Isabelle,
we noticed that a fourth axiom was missing that makes an implicit but
important assumption explicit: if a function object may be referenced in
two (different) ways and one of them declares the function to be security-
relevant, the other has to do the same. Such experience demonstrates how
important machine support is when conducting formal analysis.

Another omission was that in the proof of the security objective FSO5
an argumentation about the accessibility of certain functions was not given
in a rigorous way. We fix this by introducing an auxiliary property (where,
as typical with invariants, finding the appropriate one is the main challenge)
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and proving it to be an invariant of the ISM:

no_FTest_invariant :: "state ⇒ bool"

"no_FTest_invariant ≡ λ(ph,s).
∀ f ∈ fct s. (ph = P1 −→ f /∈ FTest0) ∧ (ph = P2 −→ f /∈ FTest)"

Exploiting the invariant, we can prove the desired property easily:

FSO5: " [[((ib,(_,s)),(p,_,(_,s’))) ∈ Trans; ib In = Exec sb f#r;

f ∈ FTest ]] =⇒ sb = Pmf ∨ p Out = [No] ∧ s’ = s"

The Isabelle proofs of all six theorems formalizing the security objectives
and the two lemmas required are well supported by Isabelle: each of them
takes just a few steps, about half of which are automatic.

The formalization of the remaining security objectives as well as their
proofs wrt. the system model may be found in [LKW00] and [Ohe02b].

5 Needham-Schroeder Public-Key Protocol

As an example of an interaction-oriented system modeled with ISMs, we
take Lowe’s fix of the Needham-Schroeder public-key authentication protocol
[Low96], which we call NSL. The emphasis here is not to provide new in-
sights to the protocol, but to take a well-known (and thus easy to compare)
benchmark system in order to show that, using the ISM approach, not only
high-level requirements analysis but also low-level analysis of distributed
systems can be done in a both rigorous and elegant way.

5.1 AutoFocus Diagrams

The system consists of an agent called Alice aiming to establish an authen-
ticated session with another agent called Bob in the presence of an Intruder
according to the Dolev-Yao attacker model [DY83]. As will be motivated

Figure 4: NSL System Structure Diagram
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in §5.2, we introduce a server NGen generating nonces. The corresponding
system structure diagram in Figure 4 shows the four components with their
data state (reflecting the expectations of the two agents, the set of messages
the intruder knows of, and the set of already used nonces, respectively) and
the named connections between them. Even if sometimes neglected, agents
involved in communication protocols do have state: their current expecta-
tions and knowledge. This is made explicit in a convenient way by describing
their interaction behavior with state transition diagrams. Figure 5 shows
the three states of the agent Alice and the transitions between them, which
have the general format guard : inputs : outputs : assignments.

Figure 5: NSL State Transition Diagram: Alice

In the initial state, Alice decides which agent she wants to talk to and
sends the corresponding request. In the next state she awaits the response
from the prospective peer before sending an acknowledgment. The third
state represents (hopefully) successful session establishment. From the ex-
ample of Alice’s transitions we realize that control state information is the
natural way to fix the order of protocol steps.

If the analysis needs to include the possibility that an agent takes part in
more than one protocol run simultaneously, this can be modeled by multiple
instantiation of the respective agent — under the assumption that from that
agent’s perspective the protocol runs are independent of each other.

5.2 Isabelle Theory

We base our ISM model on the formalization by Paulson [Pau98]. His so-
called “inductive approach” is tailored to semi-automated verification of
cryptographic protocols. Its great advantage is a high degree of automation,
due to abstraction to the core semantics of the protocols: event traces. On
the other hand, this makes both the models and the properties at least
cumbersome to express: state information is implicit, yet often it has to be
referred to, which is done by repeating suitable parts of the event history
and sometimes even by introducing auxiliary events.
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For lack of space, we do not show the definitions of the various state
and message components since they are straightforward and analogous to
the SLE66 model. Moreover, we show only the ISM definition of agent Bob
as a typical representative.

ism Bob =
ports channel

inputs "{NB,IB}"

outputs "{BI}"

messages msg

state
control Idle :: B_control

data B0 :: B_data

transitions
Resp: Idle -> Resp

in NB "[Nonce nB]",
IB "[Crypt (pubK Bob) {|Nonce nA, Agent A |}]"

out BI "[Crypt (pubK A) {|Nonce nA, Nonce nB, Agent Bob |}]"
eff "Bpeer := A, BnA := nA, BnB := nB"

Ack’: Resp -> Conn

pre "nB’ = BnB s"

in IB "[Crypt (pubK Bob) (Nonce nB’)]"

Note that Bob’s first transition Resp takes two inputs, from the nonce gener-
ator and the intruder, and produces one output. If we modeled this transi-
tion using IOAs, we would have needed three transitions with intermediate
states. The precondition of transition Ack’ could have been made implicit
by moving the comparison as a pattern to the in part, yet we make it ex-
plicit in order to emphasize its importance. The local variable BnB serves
to remember the value of the nonce expected, while the other two variables
express Bob’s view to whom he is connected in which session. In Paulson’s
approach, this state information is implicit in the event trace.

Modeling the freshness of nonces is intricate. In Paulson’s model [Pau98],
nonces are generated under the side condition that they do not already
appear in the current event history. This criterion refers to the semantic
and system-global notion of event traces — something not available from
the (local) perspective of an ISM. We solve the problem by introducing a
component called NGen that performs the generation of nonces for all agents
in a centralized fashion. In this way we can ensure global freshness with a
local criterion. Note that this component is just a modeling aid and thus its
correct interplay with the agents does not need to be analyzed. We could
alternatively express global freshness by adding an axiom restricting system
runs in the desired way, yet we prefer the more constructive approach and
derive the required freshness property as a lemma.
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5.3 Properties

Properties of protocols specified with ISMs may be expressed with reference
to both the state of agents and the messages exchanged. In the case of NSL,
the most interesting property is authentication of Alice to Bob (actually,
even session agreement [Low97] from Bob’s view), which we formulate as

[[Alice /∈ bad; Bob /∈ bad; (b,s)#cs ∈ Runs;

Bob_state s = (Conn, (|Bpeer = Alice, BnA = nA, BnB = _ |)) ]] =⇒
∃ (_,s’) ∈ set cs.

Alice_state s’ = (Wait, (|Apeer = Bob, AnA = nA |))

This can be quite intuitively read as: if in the current state s of the system
Bob believes to be connected to Alice within a session characterized by the
nonce nA then there is an earlier state s’ where Alice was in the waiting
state after initiating a connection to Bob using the same nonce nA.

It is interesting to compare the above formulation with the one given by
Paulson:2

[[A /∈ bad; B /∈ bad; evs ∈ ns_public;

Crypt (pubK B) (Nonce NB) ∈ parts (spies evs);

Says B A (Crypt (pubK A) {|Nonce NA,Nonce NB,Agent B |}) ∈ set evs

]] =⇒
Says A B (Crypt (pubK B) {|Nonce NA,Agent A |}) ∈ set evs

This statement is necessarily more indirect since the beliefs of the agents
have to be coded by elements of the event history. At least in this case,
all messages of the protocol run have to be referred to. Note that this
formulation makes stronger assumptions than ours because the value of the
nonce NB is involved.

On the other hand, due to the extra detail concerning agent state and
the input buffers (which are not actually required here), the inductive proofs
within the ISM approach are more painful and require more lemmas on
intermediate states of protocol runs than Paulson’s inductive proofs.

6 Conclusion

The Interacting State Machines approach turns out to offer good support
for formal security analysis in the way required within an industrial envi-
ronment. ISMs are designed as high-level I/O automata, with additional
structure and communication facilities. Like IOAs, ISMs are suitable for
describing typical state-based communication systems relevant for security
analysis, where ISM provide increased simplicity wrt. specifying component
interaction via buffered communication and means to relate input and out-
put actions directly.

2http://isabelle.in.tum.de/library/HOL/Auth/NS_Public.html
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The ISM approach offers graphical representation by means of Auto-
Focus System Structure Diagrams and State Transitions Diagrams. The
graphical views are closely related to the formal system specification and
verification via a tool translating the AutoFocus representation to an Isabelle
theory.

We have shown that the ISM approach is equally applicable to a variety
of security analysis tasks, ranging from high-level security modeling and re-
quirements analysis, typically showing less system structure but increased
complexity of state transitions, to security analysis of distributed systems
including cryptographic protocols, likely to exhibit advanced system struc-
turing. The examples explicate the importance of a fully formalized strategy,
in particular, the LKW model has been significantly improved by identifying
hidden assumptions and completing sloppy argumentation.

Further work on ISMs includes the extension of the proof support in the
ISM level and the provision of a specification language based on temporal
logic. Additional AutoFocus capabilities may be made available, including
further systems views like event traces and simulation, as well as test case
generation.
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