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Abstract. We introduce the ISM approach, a framework for modeling
and verifying reactive systems in a formal, even machine-checked, way.
The framework has been developed for applications in security analysis.
It is based on the notion of Interacting State Machines (ISMs), kind of
high-level Input/Output Automata. The ISM framework is used to de-
fine system models and present them graphically with the AutoFocus
tool, to let them be checked for consistency and translated to a repre-
sentation within the theorem prover Isabelle/HOL (or alternatively to
define them directly as Isabelle theory sections), and finally to employ
the theorem prover for performing any kind of syntactic and semantic
checks, in particular semi-automatic verification. We demonstrate that
the framework can be fruitfully applied for formal system analysis by
two classical application examples: the LKW model of the Infineon SLE
66 smart card chip and Lowe’s fix of the Needham-Schroeder Public-Key
Protocol.
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1 Introduction

1.1 Motivation

In industrial environments, there is an increased demand for rigorous analysis
of security properties of systems. Due to restrictions imposed by the application
domain, the system environment, and business needs, new security mechanisms
and architectures have to be invented frequently, with time-to-market pressure
and intellectual property considerations obstructing the chance to gain confi-
dence by exposing a proposed solution to the security community (which has
been shown to be appropriate for cryptographic algorithm assessment). Formal
analysis of suitable abstractions of systems has instead turned out to be ex-
tremely helpful in reasoning about a system’s security, since the mathematical
precision of the arguments allows for maximal confidence in the results obtained
and, thus, in the security of the system being modeled.



The importance of formal analysis – on top of open review – in security as-
sessment is, for instance, reflected by the requirements stated for high assurance
levels of criteria like ITSEC [ITS91] and CC [CC99], which include formal se-
curity modeling and formal system development steps, and the achievements of
the security protocol verification community, which discovered flaws in protocols
that failed to be detected by informal approaches.

However, even in a formal setting it is easy to make – minor and some-
times even major – mistakes: undefined expressions, type mismatches, inconsis-
tent specifications, missing evidence in proofs, false conclusions etc. Therefore,
pure pen-and-paper formalizations cannot be considered fully reliable. Machine-
checking of formal objects and structures has to be employed in order to sig-
nificantly reduce the occurrence of such mistakes. Machine support additionally
gives the opportunity to represent and deal with formal objects – both spec-
ifications and proofs – in an easy-to-comprehend way, which is a prerequisite
for introducing formal approaches in an industrial environment characterized by
time and cost restrictions.

1.2 Goals

A framework for machine-assisted formal security analysis that is particularly
suited for industrial use should enjoy a number of properties:

Expressiveness. It should be possible to describe any typical security sensitive
computation, storage, and communication system in an abstract way. This
requires in particular the notions of state transformation, concurrency, and
message passing.

Flexibility. Since IT systems and their security threats evolve quickly, the mod-
els produced within the framework should be easily adaptable and extendable
as necessary to reflect the changes.

Simplicity. Modeling a system, stating its properties and proving them should
require as little expertise and time as possible while maintaining the rigor of
a fully formal approach.

Graphical capabilities. System models should be representable as diagrams
that provide a good overview of the system structure and advance a quick
intuition about its behavior.

Maturity of the semantics. The specification formalism should build upon a
well-understood logic and have a well-defined semantics that supports rea-
soning about, e.g., invariants and refinement.

Availability of tools. The framework should be built from existing widely
available (open-source) software like editors and proof tools and require at
most minor modifications or extensions to them.

Since we did not find an existing framework that fulfills all these requirements
to a satisfactory extent, we decided to build our own.
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1.3 Related Work

The IOA Language and Toolset [GL98,Kay01] is a framework for analyzing com-
putational processes with aims very similar to ours. It consists of a specification
language and tool support for simulation, theorem proving, model checking, and
code generation, where by now the simulation aspect is developed most and the-
orem proving support is limited to PVS. Its semantic foundation is the notion of
I/O Automata (IOAs) [LT89] modeling asynchronous distributed computation
with synchronous communication. Since the notion is based on transition sys-
tems augmented by communication primitives (rather than e.g. a process algebra
augmented by local computation primitives), it is fairly easy to understand. It
is equipped with a well-developed meta theory supporting refinement and com-
positional reasoning. System properties, both safety and liveness ones, may be
described using temporal logics and proved by model checking and interactive
theorem proving.

The only — but severe — drawback of IOAs from our perspective, in partic-
ular when modeling system security in an abstract way, is that their interaction
scheme is rather low-level: buffered communication has to be modeled explicitly,
and transitions involving several related input, internal processing, and output
activities cannot be expressed atomically. Instead, each high-level transition has
to be split into multiple low-level transitions, and between these, any number of
further input events may take place due to the input-enabledness of IOAs. The
solution to this problem is to add input buffers that accumulate messages asyn-
chronously. An automaton may retrieve messages from multiple buffers, process
them and send output to multiple buffers, and all this can be done simultane-
ously within a single atomic1 transition. Our notion of ISMs, first described in
[Ohe02], provides for that.

A further related framework that provided inspiration for ours is AutoFocus
[HSSS96] – see §2.2 for more details. Even though developed primarily for mod-
eling and verifying functional properties of embedded systems, it is used also for
the security analysis of general distributed systems [WW01,JW01].

Other related approaches combine state-oriented and message-oriented de-
scription methods, for example translating CSP to B [But99] or Z to CSP [Fis00].
The drawback of such hybrids is that the user has to deal with two different non-
trivial formalisms. Moreover, theorem proving support respecting the structure
of the mixed-style specifications seems not to be available.

2 Preliminaries

In this section, we briefly introduce the two software tools we rely on and com-
ment on their suitability for the ISM approach.

1 Even though these high-level transitions are atomic, the corresponding I/O events
are independent of each other because of the buffered asynchronous output seman-
tics; thus there is no need for action refinement.
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2.1 Isabelle/HOL

Isabelle [NPW02] is a generic theorem prover that has been instantiated to many
logics, in particular the very practical Higher-Order Logic (HOL). Isabelle/HOL
[PNW+] is a predicate logic based on the simply-typed λ-calculus and thus in a
sense combines logical and functional programming. Being quite expressive and
supporting automatic type inference, it is the most important and best supported
logic of Isabelle. The lack of dependent types introduces a minor nuisance for
applications like ours: for systems consisting of more than one ISM, there has
to be a single type of message contents into which all message data is injected,
and analogously for the local states of the automata composed in parallel.

Proofs are conducted primarily in an interactive fashion where automatic and
semi-automatic methods are available to tackle the routine parts. The Isabelle
system is well-documented and well-supported, is freely available (including
sources) and comes with the excellent user interface Proof General [AGKS99].
We consider it the most flexible and mature verification environment available.
Using Isabelle/HOL, security properties can be expressed easily and adequately
and verified with powerful proof methods.

2.2 AutoFocus

AutoFocus [HSSS96] is a freely available specification and simulation tool for
distributed systems. Components and their behavior are specified by a combina-
tion of System Structure Diagrams (SSDs), State Transition Diagrams (STDs)
and auxiliary Data Type Definitions (DTDs). Their execution can be visualized
using Extended Event Traces (EETs). Various back-ends including code genera-
tors and interfaces to model checkers may be acquired by purchase from Validas
[S+].

We employ AutoFocus for its strengths concerning graphical design and pre-
sentation, which is important when setting up models in collaboration with
clients (where strong familiarity with formal notations cannot be assumed),
when documenting our work, and publishing its results. For abstract security
modeling, there are currently two problems with AutoFocus. First, expressive-
ness is limited concerning the type system and the handling of underspecification.
Second, due to the original emphasis of AutoFocus on embedded systems, the
underlying semantics is still clock-synchronous. In contrast, for the most of our
applications, an asynchronous (buffered) semantics is more adequate, which is
under consideration also for future versions of AutoFocus. Using an alternative
semantics implies that we cannot make use of the simulation, code generation
and model checking capabilites of current AutoFocus and its back-ends. Yet this
is not a real obstacle for us since we are interested mainly in its graphic capabili-
ties and the offered specification syntax is general enough to cover our deviating
semantics as well.
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3 The ISM approach

ISMs are the core of our modeling and verification framework. In this section we
explain the ISM concepts and semantics both in an intuitive way and as rigorous
mathematical definitions. Moreover, we comment briefly on the ISM represen-
tation in AutoFocus and define the syntax of ISM sections in Isabelle/HOL
theories. In the subsequent sections we present two classical case studies.

We use ISMs as building blocks for defining system models of a wide range of
IT systems and expressing and verifying their security properties. At the time of
writing, we have applied the ISM formalism in three major projects. They include
the analysis of a complex database access control system for Siemens Medical
Solutions and of the Infineon SLE88 smart card processor memory management
[OLW04]. More information on the current status of the ISM framework, includ-
ing the sources, a manual, and all publications, may be found at the project
home page, http://ddvo.net/ISM/.

The ISM formalism has been extended to include global state [OL03]. This
can be used, for instance, to provide for dynamic activation state and communi-
cation topology [OL03] or ambient-like administrative domains [KO03] or even
their combination [KO03].

3.1 Concept of Interacting State Machines

An Interacting State Machine (ISM) is an automaton whose state transitions
may involve multiple input and output simultaneously on any number of ports.
As the name suggests, the key concepts of ISMs are states (and in particular
the transitions between them) and interaction. By interaction we mean explicit
buffered communication via named ports (which are also called connections),
where on each port, (typically) one receiver listens to possibly many senders.
Figure 1 gives the basic ISM structure.

Any number of ISMs may be composed in parallel by interleaving their tran-
sitions and forming I/O connections among peer ISMs. The local state of the
resulting ISM is essentially the Cartesian product of the local states of its compo-
nents. The top-level composition is called an ISM system. In [OL03] we extend
the ISM concept by the notion of global state, which is not directly visible to
ISMs but can control the whole system structure. The global state is affected by
commands contained in transitions of elementary ISMs.

A configuration of an ISM consists of its input buffer state and local state. The
local state may have arbitrary structure but typically is the Cartesian product of
a control state which is of finite type and a data state which is a record of named
fields representing local variables. Each ISM has a single2 local initial state.

2 If a non-singleton set of initial states is required, this may be simulated by nonde-
terministic spontaneous transitions from a single dummy initial state.
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Fig. 1. ISM structure

The input buffers of an ISM are a family of (unbounded) message FIFOs,
indexed by port names. The buffers are not part of elementary ISMs but are
introduced by the parallel composition. Input ports can – but in most appli-
cations should not – be shared among ISMs, which leads to nondeterministic
competition on each input item, without fairness guarantees.

Message exchange is triggered by an output operation of any ISM within the
system. Input from the environment may be modeled with suitable ISMs. Inputs
cannot be blocked, i.e. they may occur at any time, appending the received value
to the corresponding FIFO. Values stored in the input buffers related to an ISM
are received and processed by the ISM when it is ready to do so.

The actions of ISMs are given as user-defined transitions, which may be
nondeterministic and can be specified in any relational style. Thus for each
transition the user has the choice to define it in an operational (i.e., executable)
or axiomatic (i.e., property-oriented) fashion or a mixture of the two. Transition
rules specify that – potentially under some precondition that typically includes
matching of messages in the input buffers – the ISM consumes some input, makes
a local state transition, and produces some output. The output is appended to
the respective input buffers specified by port names. Direct or indirect feedback
is possible. Multicast is not directly supported but may be explicitly modeled
easily.

An ISM system run is any prefix of the sequence of configurations reachable
from the initial configuration. The length of a run is not bounded but finite.
Finiteness allows for a simple trace semantics, but on the other hand implies that
we cannot handle liveness properties. Yet we do not feel this as a real restric-
tion because most relevant properties are essentially safety properties: practical
guarantees about the existence of future events typically involve timeouts.

Transitions of different ISMs that are composed in parallel cannot directly
interfere with each other but are related only by the causality wrt. the messages
interchanged. Execution gets stuck (i.e., deadlocks) when there is no component
that can perform any step. As is typical for reactive systems, there is no built-in
notion of final or accepting states.
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3.2 ISM Semantics

This subsection gives the logical meaning of ISMs, which is both an extension
and a slight simplification of the definitions given in [Ohe02]. As the modifi-
cations pervade all parts of the ISM definitions, and for self-containedness, it
appears mandatory to rephrase all of them.

First some general remarks on the presentation: all definitions and proofs
have been developed as a hierarchy of Isabelle/HOL theories and machine-
checked using this tool. One important effect of this approach is that many kinds
of mistakes like type mismatches can be ruled out. Using the LATEX documenta-
tion feature of Isabelle would even preclude typographic slips in the presentation
but on the other hand would introduce some technicalities many readers would
not be familiar with. Therefore, we give the semantics in traditional “mathe-
matical” style in order to enhance readability. We sometimes make use of λ-
abstraction borrowed from the λ-calculus, but write (multi-argument) function
application in the conventional form, e.g. f(a, b, c). Occasionally we make use of
partial application (aka. currying), such that, in the example just given, f(a, b)
is an intermediate function that requires a third parameter before yielding the
actual function result.

Message Families Let M be the type of all messages potentially exchanged by
ISMs and P the type of port names. Then the message families, which are used
to denote both input3 buffers and input/output patterns, have type MSGs =
P →M∗ where M∗ is any finite sequence of elements of M. We will make use
of the following operations on message families:

– the term ¤ denotes the empty message family λp. 〈〉 where 〈〉 denotes the
empty sequence

– the term mdom(m) abbreviates {p. m(p) 6= 〈〉}, i.e. the domain of m
– the infix operation .@. concatenates two message families m and n pointwise:

(m .@. n)(p) = m(p) @ n(p)

States and Transitions A set of ISM transitions has type TRANS(Σ) =
℘((MSGs×Σ)× (MSGs×Σ)) where the parameter Σ stands for the type of
the local state and the two occurrences of MSGs stand for input and output
patterns, respectively. Each element has the form ((i, σ), (o, σ′)) and means
that the ISM can (possibly nondeterministically) perform a step from local state
σ to σ′, consuming input i and producing output o. Simultaneous input and/or
output on multiple channels can be specified because both i and o each denote
whole message families. In contrast to the original definition of ISMs [Ohe02],
within a transition, input is described by patterns of messages consumed in the
given step — not by a transition between the state of the input buffer before
and after the transition. This simplifies the definition of single ISMs and shifts
the concept of input buffering to the places where it is indispensable: at the
definitions of parallel composition and automata runs.
3 Recall that output buffers are not required.
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Elementary ISMs An ISM is given as a quadruple4 a = (In(a),Out(a), σ0(a),
Trans(a)) of type ISM(Σ) = ℘(P)×℘(P)×Σ×TRANS(Σ) where

– In(a) is the set of input port names
– Out(a) is the set of output port names
– σ0(a) is the initial local state
– Trans(a) is the transition relation

Such an ISM is well-formed iff all the port names actually used in the transitions
for input or output respect the I/O interface of the ISM, i.e. ipns(a) ⊆ In(a)
and opns(a) ⊆ Out(a) where

– ipns(a) =
⋃

t∈Trans(a) mdom((λ((i, σ), (o, σ′)). i)(t))

– opns(a) =
⋃

t∈Trans(a) mdom((λ((i, σ), (o, σ′)). o)(t))

Note that In(a) and Out(a) may overlap, which allows for direct feedback
within parallel composition.

Runs Below we will define composite ISM runs, i.e. the parallel composition and
execution of a family of ISMs, directly in one step. Nevertheless, we first define
the two notions of ISM runs and parallel composition independently. Defining
parallel composition in isolation not only makes it easier to understand but also
enables hierarchical analysis and design.

The open runs of an ISM a, denoted by Runs(a) ∈ ℘(Σ∗), are finite sequences
of states that are inductively defined as

〈σ0(a)〉 ∈ Runs(a)

ss_σ ∈ Runs(a)
((i, σ), (o, σ′)) ∈ Trans(a)

ss_σ_σ′ ∈ Runs(a)

The operator _ appends elements to a sequence.
This form of runs is called open because in each step the environment pro-

vides arbitrary input to the ISM, and any output of the ISM is discarded. If
feedback from output to input is desired, one can achieve this by applying the
parallel composition operator to the singleton family of ISMs consisting just of
a, described next.

Parallel Composition Any number of ISMs can be combined in parallel to
form a single composite ISM, which may be further combined with others, etc.
By identifying input and output buffers of ISMs to be combined, internal com-
munication including feedback loops can be introduced as shown in Figure 2.
4 The definition pattern x = (sel1(x), sel2(x), . . .) should not be understood as a

recursive definition of x but as a shorthand introducing a tuple with typical name x
and with selectors (i.e., projection functions) sel1, sel2, ...
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The parallel composition ‖i∈IAi of a family of ISMs A = (Ai)i∈I is an ISM of
type ISM(CONF(Πi∈IΣi)) where I is any index set I and for any X, the type
of an ISM configuration CONF(X) is defined as MSGs×X. Here MSGs stands
for the type of internal buffers. The composite ISM is defined as the quadruple
(AllIn(A)\AllOut(A), AllOut(A)\AllIn(A), (¤, S0(A)), PTrans(A)) where

Fig. 2. General communication pattern within parallel composition

– AllIn(A) =
⋃

i∈I In(Ai)
– AllOut(A) =

⋃
i∈I Out(Ai)

– ¤ gives the initial value of the internal buffers, which are used to handle I/O
among peers as well as direct feedback

– S0(A) = Πi∈I(σ0(Ai)) is the Cartesian product of all initial local states
– PTrans(A) of type TRANS(CONF(Πi∈IΣi)) is the parallel composition of

their transition relations.

The pre- and post-states in the composed transition relation refer not only
to the Cartesian product of all local states but also to a message family b. As
already mentioned above for the initial state, the role of b is to buffer internal
I/O. Apart from this, the composed transition relation is defined simply as the
interleaving of the transitions of the component ISMs:

j ∈ I
((i, σ), (o, σ′)) ∈ Trans(Aj)

((i|AllOut(A)
, (i|AllOut(A) .@. b, S[j :=σ ])),

(o|AllIn(A)
, (b .@. o|AllIn(A), S[j :=σ′]))) ∈ PTrans(A)

where
– S[j :=σ] denotes the replacement of the j-th component of the tuple S by σ

– m|P denotes the restriction λp. if p ∈ P then m(p) else 〈〉 of the message
family m to the set of ports P

– i|AllOut(A)
denotes those parts of the input i provided not by the output of

peer ISMS but by outer ISMs
– i|AllOut(A) denotes the internal input from peer ISMs or direct feedback,

which is taken from the current buffer contents b

– o|AllIn(A)
denotes those parts of the output o provided to outer ISMs

– o|AllIn(A) denotes the internal output to peer ISMs or direct feedback, which
is added to the current buffer contents b.
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A parallel composition is well-formed iff the inputs of the individual compo-
nents do not overlap: ∀i j. i 6= j −→ In(Ai) ∩ In(Aj) = ∅. On the other hand,
outputs may overlap, which allows the outputs of different ISMs to interleave
nondeterministically.

A family A of ISMs is called closed iff AllIn(A) = AllOut(A), i.e. there is no
interaction with any outside ISMs. If a system is modeled with a closed ISM
family and input from the environment is important, this may be modeled with
an ISM that belongs to the family and does nothing but generating all possible
input patterns.

When composing ISMs, it is occasionally necessary to prevent name clashes
or to hide connections, which can be achieved by suitable renaming of ports.

Composite Runs We define ISM runs not only for single (possibly composite)
ISMs but also directly for closed families of ISMs intended to run in parallel.
The above definition of parallel composition may be used in combination with
composite runs to describe inner (possibly nested) levels of parallel composition.

The set of all possible composite runs is denoted by CRuns(A) and has type
℘((CONF(Πi∈IΣi))∗) corresponding to the ISM type ISM(Πi∈IΣi). Its elements
are finite sequences of configurations, inductively defined as

〈(¤, S0(A))〉 ∈ CRuns(A)

j ∈ I
cs_(i .@. b, S[j :=σ]) ∈ CRuns(A)

((i, σ), (o, σ′)) ∈ Trans(Aj)
cs _ (i .@. b, S[j :=σ]) _ (b .@. o, (S[j :=σ′])) ∈ CRuns(A)

Traces of composite runs have the form 〈(¤,S0(A)), (b1,S1), (b2,S2), . . .〉
where each element of the sequence is a pair of the current internal buffer contents
and the Cartesian product of all the currently relevant local states.

One can show that composite runs of any closed family A of well-formed
ISMs are equivalent to the runs of the parallel composition of the same family:
wf isms(A) ∧ closed(A) −→ Runs(‖i∈IAi) =CRuns(A).

3.3 AutoFocus representation

By design, ISMs have almost the same structure as the automata definable with
AutoFocus [HSSS96], and thus we can use AutoFocus as a graphical front-end
to our Isabelle implementation. We will employ AutoFocus diagrams when in-
troducing the application examples below.

In a typical application of our framework, ISMs are first specified5 as stan-
dard non-hierarchical AutoFocus automata, saved in the so-called Quest file for-
mat, and then translated into suitable Isabelle theory files by a tool program
[Nan02,ON02].

5 see the online tutorial http://autofocus.in.tum.de/nelli/englisch/html/
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3.4 Isabelle representation

An ISM section is introduced by the keyword ism and has the following general
structure6:

ism name ((param name :: param type))∗ =
ports pn type
inputs I pns
outputs O pns

messages msg type
states [state type]
[control cs type [init cs expr0]]
[data ds type [init ds expr0] [name ds name]]

[ transitions
(tr name [attrs]: [cs expr -> cs expr’]
[pre (bool expr)+]
[in ([multi] I pn I msgs)+]
[out ([multi] O pn O msgs)+]
[post ((lvar name := expr)+ | ds expr’)]
)+]

The meaning of the individual parts is as follows.
– The ISM definition will be referred to by name. It may have any number of

parameters, each declared by param name and a corresponding param type.
The parameters may be used throughout the definition body.

– The type expression pn type gives the Isabelle/HOL type of the port names,
while I pns and O pns denote the set of input and output port names, re-
spectively.

– The type expression msg type gives the type of the messages, which is typi-
cally an algebraic datatype with a constructor for each kind of message.

– The optional state type should be given if the current ISM forms part of a
parallel composition and the state types of the ISMs involved differ. In this
case, state type should be a free algebraic datatype with a constructor for
each state type of the ISMs involved.
The type expressions cs type and ds type give the types of the control and
data state, respectively, while the optional terms cs expr0 and ds expr0 spec-
ify their initial values — if not given, they default to some arbitrary value.
Either (i.e., not both) the control state or the data state may be absent.
The optional logical variable name ds name, which defaults to s, may be
used to refer to the whole data state within transition rules.

Transitions are given via named rules where attrs is an optional list of attributes,
e.g. [intro]. The control states (if any) before and after the transition are
specified by the expressions7 cs expr and cs expr’.
6 [. . .] marks optional parts, (. . .)+ means one or more comma-delimited occurrences
7 These need not be constant but may contain also variables, which is useful for

modeling generic transitions. In this case, one such transition has to be represented
by a set of transitions within AutoFocus.
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Expressions within a rule may refer to the logical data state variable men-
tioned above. In particular, assuming that s is the name of the data state vari-
able, then the value of any local variable lvar of the ISM may be referred to by
lvar s. The scope of free variables appearing in a rule is the whole rule, i.e. free
variables are implicitly universally quantified (immediately) outside each rule.
All the following parts of a transition rule are optional:

– The pre part contains guard expressions bool expr, i.e. preconditions con-
straining the enabledness of a transition.

– The in part gives input port names (or sets of them if preceded by multi)
I pn, each in conjunction with a list I msgs of message patterns expected
to be present in the corresponding input buffer(s). When an ISM executes
a transition, any free variables in message patterns are bound to the actual
values that have been input. Each port names should appear at most once
within a in part. Any input port not explicitly mentioned is left untouched.

– The out part gives output port names O pn, each in conjunction with an
expression O msgs denoting a list of values designated for output to the
corresponding port. The variant using multi is used to specify multicasts.
Each port name should be used at most once within each out part. Any
output port not mentioned does not obtain new output.

– The post part describes assignments of values expr to the local variables
lvar name of the data state. Variables not mentioned remain invariant. Al-
ternatively, an expression ds expr’ may be given that represents the entire
new data state after the transition. Assignments to the local variables suit an
operational style, whereas an axiomatic style can be achieved using ds expr’
(in conjunction with suitable constraints in the preconditions).

An ism theory section is translated to Isabelle/HOL concepts in a straight-
forward way using an extension to Isabelle, as described in [Nan02]. In particular,
each ISM section is translated to a record definition with the appropriate fields,
the most complex one being the transition relation, which is defined via an in-
ductive (but not actually recursive) definition.

The meta theory of ISMs that we have defined in Isabelle/HOL includes
all concepts mentioned in §3.2, in particular well-formedness, renaming, parallel
composition, runs, and composite runs. Further auxiliary concepts are intro-
duced as well, in particular reachability and induction schemes related to ISM
runs. The characteristic properties of these concepts, as required for system ver-
ification, are derived within Isabelle/HOL. All details of the meta theory may
be found in [ON02].

Example ism sections will be given in §4.4 and §5.2.
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4 LKW Model for the Infineon SLE 66

We give a slightly extended and improved version of the LKW formal security
model for the Infineon SLE 66 smart card processor.

4.1 The SLE 66 family

SLE 66 is the short name of a family of smart card chips by Infineon. Each chip
consists of a CPU including an encryption unit, RAM, ROM, and EEPROM,
which stores e.g. firmware and personalization data.

Fig. 3. SLE 66 Block Diagram

The chip has been designed as a general-purpose microprocessor with special
hardware supporting security-sensitive applications like electronic passport or
payment systems. In contrast to the successor family, SLE 88, these processors
do not provide separation of memory via a MMU [OLW04] or any operation
system functionality but provide a secure platform for a customized BIOS and
essentially a single application. Therefore, security has to be dealt with at a very
elementary level where nothing can be assumed about higher-level functionality.

The most important security objective is to preserve the security of informa-
tion stored in the memory components. In more detail:

– The data items stored in any of the memory components shall be protected
against unauthorized disclosure or modification.

– The security relevant functions stored in ROM or EEPROM shall be pro-
tected against unauthorized disclosure or modification.

– Hardware test routines shall be protected against unauthorized execution.

The objectives are achieved by implementing a set of security enforcing func-
tions which mainly perform the following two tasks:

– The system passes several phases during its lifetime. Entry to the phases is
controlled by test functions, which check different flags and give a specified
level of authorization.

– Additionally, all data stored in the memory components is encrypted by
hardware means, utilizing several keys and key sources with a chip specific
random number among them.
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4.2 LKW formal security model

The LKW model [LKW00] has been one of the first formal models for security
properties of hardware chips. It has been used very successfully within the se-
curity evaluation process for the whole SLE 66 family on ITSEC level E4 high
and the corresponding Evaluation Assurance Level 5 (semi-formally designed
and tested, which includes a formal security model) [CC99]. A slight extension
has been introduced [OLW02] in order to reflect additional application-oriented
security objectives defined in the Smart Card IC Platform Protection Profile
[AHIP01]. More recently, we have added an analysis of nonleakage [Ohe04].

Developing the original LKW model took about two months of work, in-
cluding understanding and discussing the system design and security target,
investigating modeling alternatives, discussing the model with the chip develop-
ers, and supporting the evaluation process. The formal parts made up about ten
percent of the whole evaluation and certification effort which was even based on
existing development documents. Re-stating the model with the ISM approach
took about two weeks. Incorporating the extension mentioned above took just a
few days including discussions etc. These numbers may serve as an indicator for
estimating formal modeling efforts in future evaluation processes.

Meanwhile we have developed also a security model of the SLE 88 memory
management unit [OWL03] following the ISM approach as well.

The formal security policy model of the SLE 66 consists of two parts: a system
model describing the processor’s behavior on an abstract level by means of a state
transition automaton with input and output, and a set of security objective
specifications given as properties of automata runs. Thus one can prove that the
security objectives are met by the system model. Interpreting the system model
in terms of the real processor then allows one to conclude with some evidence
that the processor indeed meets its security objectives as required by ITSEC E4
assessment criteria.

The style of the LKW security model is ad-hoc, but using classical formal
access control models instead would not be appropriate because they introduce
notational overhead that would not be justified in the context of the SLE 66
evaluation and because they are not flexible enough to handle phase transitions
and the like adequately.

The LKW model has been done originally as a pen-and-paper work, i.e. with-
out tool assistance. Inevitably, even fully reviewed descriptions of the model con-
tained many (mostly minor) syntactical, typographical and semantical slips as
well as type errors, but also omissions like missing assumptions and incomplete
proofs. Therefore it was desirable to formalize the model in a machine-checked
way, applying a well-developed meta theory. At first, using the Isabelle imple-
mentation of IOAs [Mül98] for this purpose seemed promising, yet the weak
structure of IOA transitions appeared inappropriate, which became one of our
motivations to invent ISMs. Using the ISM approach, the LKW model can be
represented adequately and with maximal quality, as demonstrated on the fol-
lowing pages.
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4.3 AutoFocus Diagrams

On the abstract level of the LKW model, the system architecture of the SLE 66
is rather trivial: there is one component with one input port named In and one
output port named Out, as depicted by Figure 4. The data state of the component
consists of two stores mapping names of functions to the corresponding function
code and data objects to corresponding data values.

Fig. 4. SLE66 System Structure Diagram

Much more involved is the structure of the state transitions. There are four
control states corresponding to the phases of the SLE 66 life cycle:

Phase 0 : construction of the chip
Phase 1 : upload of Smartcard Embedded Software and personalization
Phase 2 : normal usage
Phase Error : locked mode from which there is no escape

Fig. 5. SLE 66 State Transition Diagram

In order to keep the state transition diagram clear, Figure 5 contains all
control states and transitions, but instead of showing the preconditions, inputs,
outputs, and changes to the data state, we just label the transitions with the
names of the corresponding transition rules. These are described in detail in §4.4,
while here we give an informal general description:
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R0.0 thru R0.4 describe the execution of functions in the initial phase 0. Only
the processor manufacturer is allowed to invoke functions in this phase and
the requested function must be present.

R0.0 states that if the function belongs to class FTest0 and the corresponding
test succeeds, phase 1 will be entered, and the test functions of that class
are disabled.

R0.1 describes a shortcut leaving out phase 1: if the function belongs to class
FTest1 and the test succeeds, phase 2 will be entered, and all test functions
are disabled.

R0.2 states that if a test fails, the system will enter the error state.
R0.3 models the successful execution of any other function, in which case the

function may change the chip state and yield a value.
R0.4 states that in all remaining cases of function execution, the chip responds

with No and its state remains unchanged.
R1.1 thru R1.4 describe the execution of functions in the upload phase 1 anal-

ogously to R0.1 thru R0.4.
R2.1 and R2.2 describe the execution of functions in the usage phase 2 anal-

ogously to R0.3 and R0.4.
R3.1 and R3.2 describe the execution of functions in the error phase analo-

gously to R0.3 and R0.4, except that the only function allowed to be executed
in this phase is chip identification.

R4.1 and R4.2 describe the effects of a specific operation used for uploading
new (operating system and application) functionality on the chip. This must
be done by subjects trusted by the processor manufacturer and is allowed
only in phase 1.

R4.1 describes the admissible situations, and
R4.2 describes all other cases.
R5.1 thru R5.3 describe the effects of attacks. Any attempts to tamper with

the chip and to read security-relevant objects via physical probing on side
channels (by mechanical, electrical, optical, and/or chemical means), for ex-
ample differential power analysis or inspecting the silicon with a microscope,
are modeled as a special “spy” input. Note that modeling physical attacks
in more detail is not feasible because this would require a model of physi-
cal hardware. In particular, the conditions (and related mechanisms) under
which the processor detects a physical attack are beyond the scope of the
model.

R5.1 describes the innocent case of reading non-security-relevant objects in any
regular phase, which actually reveals the requested information.

R5.2 describes the attempt to reading security-relevant objects in any regular
phase. The chip has to detect this and enters the error phase, while the
requested object may be revealed or not. This concept is called “destructive
reading”: one cannot rule out that attacks may reveal information even about
security-relevant objects, but after the first of any such attacks, the processor
hardware will be “destroyed”, i.e. cannot be used regularly.

R5.3 states that in the error phase no (further) information is revealed.

16



4.4 Isabelle Definition

We describe in detail our ISM model of the SLE 66, which is based on the orig-
inal LKW model plus the slight extension introduced in [OLW02]. We do this
employing the automatic LATEX documentation facility of Isabelle that can be
used like a “literal programming” environment: the user augments an Isabelle
theory (in this case representing our SLE 66 model) with comments and other
text sections in LATEX format that may refer (via a special quotation mechanism)
to the type declarations, constant definitions, theorems, etc. When Isabelle pro-
cesses the theory, it generates LATEX output for all parts of the theory that are
marked as relevant for documentation and merges them with the chunks of text
supplied by the user. The great advantage of this approach is that the theory
(and proof) development and its documentation are always with each other and
mistakes typically resulting from typesetting formulas with LATEX manually are
avoided.

The Isabelle theory sources, including the documenting text, may be obtained
from [ON02]. For the original description of the LKW model containing, among
others, a more general discussion on the benefits of formal modeling, refer to
[LKW00].

theory SLE66 = ISM_package: — we build on the general ISM definitions

First we have to define a bunch of entities (types, logical constants, etc.)
acting as building blocks for the actual ISM theory section. In order to keep the
model as abstract as possible, which makes it less bulky to read and simplifies
the proofs, we often use underspecification. This important modeling technique
means that for part of the types and constants we do not give full definitions
but only declarations of their names. We even do not make the encryption of
data in the memory components explicit.

Names Objects stored on the chip may be either functions or data and are
referred to by object names. The type of these names, on, is the disjoint sum of
function names fn and data object names dn, which are not further specified:

typedecl fn — function name
typedecl dn — data object name

datatype on = F fn | D dn — object name

Objects are classified as security-relevant (demanding secrecy and integrity)
by including their names in the sets F_Sec or D_Sec, whose disjoint union is called
Sec. In order to meet the additional requirements of [AHIP01], the domain of
security relevant functions F_Sec of the original LKW model has been refined
to the disjoint union of F_PSec and F_ASec, which control the protection of the
processor and application functionality, respectively.

In the following theory sections, we declare a list of constants together with
their types. We define only part of them, and for part of the remaining ones we
give the essential properties in the form of axioms:
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consts
f_SN :: "fn" — the name of the function giving the serial number
FTest0 :: "fn set" — the names of test functions of phase 0
FTest1 :: "fn set" — the names of test functions of phase 1
FTest :: "fn set" — the names of all test functions
F_Sec :: "fn set" — the names of all security-relevant functions
F_PSec :: "fn set" — the subset of F_Sec relevant for the processor
F_ASec :: "fn set" — the names of F_Sec relevant for applications
F_NSec :: "fn set" — the names of all non-security-relevant functions
D_Sec :: "dn set" — the names of all security-relevant data objects
D_PSec :: "dn set" — the subset of D_Sec relevant for the processor
D_ASec :: "dn set" — the names of D_Sec relevant for applications
D_NSec :: "dn set" — the names of all non-security-relevant data objects

Sec :: "on set" — the names of all security-relevant objects
defs

FTest_def: "FTest ≡ FTest0 ∪ FTest1"

F_ASec_def: "F_ASec ≡ F_Sec - F_PSec"

D_ASec_def: "D_ASec ≡ D_Sec - D_PSec"

F_NSec_def: "F_NSec ≡ -F_Sec"

D_NSec_def: "D_NSec ≡ -D_Sec"

Sec_def: "Sec ≡ {F fn |fn. fn ∈ F_Sec} ∪ {D dn |dn. dn ∈ D_Sec}"

axioms
FTest01_disjunct: "FTest0 ∩ FTest1 = {}"

f_SN_not_FTest: "f_SN /∈ FTest"

F_PSec_is_Sec: "F_PSec ⊆ F_Sec"

FTest_is_PSec: "FTest ⊆ F_PSec"

State The abstract state of an SLE 66 chip is a pair, where the first component
is the phase in the processor life cycle:

datatype ph = P0 | P1 | P2 | Error

We introduce the type val for any values, i.e. function code or data stored
or processed by the chip. The only thing we need to know about the type val is
that the serial number of the chip belongs to it.
typedecl val — data and function values

consts SN :: val — serial number

The second state component is a record of two partial functions, valF and
valD, mapping function and data object names to values:

record chip_data =

valF :: "fn ⇀ val"

valD :: "dn ⇀ val"

The function val takes an argument of type chip_data and yields a partial
function lifting valF and valD to general object names of type on :
constdefs

val :: "chip_data ⇒ on ⇀ val"

"val s on ≡ case on of F fn ⇒ valF s fn | D dn ⇒ valD s dn"
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Having defined the two components of the processor state, we can now give
the definition of the overall state:

types SLE66_state = "ph × chip_data"

We will often need to refer to the set of functions available in the current
state, therefore we introduce an auxiliary function fct that yields the domain
of valF :

constdefs
fct :: "chip_data ⇒ fn set"

"fct s ≡ dom (valF s)"

We declare three further auxiliary functions that denote the results and state
changes of a processor function (including test functions):

consts
"output" :: "fn ⇒ chip_data ⇒ val"

"change" :: "fn ⇒ chip_data ⇒ chip_data"

— change is unused for test functions
"positive" :: "val ⇒ bool" — check for positive test outcome

Further ISM section ingredients We need only two port names, one for
input to the chip and one for its output:

datatype interface = In | Out

SLE 66 commands provide information on the subjects issuing them. There
is a special subject Pmf denoting the processor manufacturer.

typedecl sb

consts Pmf :: sb

Possible input consists of either the two kinds of SLE 66 commands modeling
function execution and function code loading operations or the Spy operation,
which models attacks that may reveal information stored on the chip and may
corrupt the chip memories. Output of the SLE 66 may be the result value of a
(regular) function or an indication of success or failure.

datatype message =

Exec sb fn | Load sb fn val | Spy on — input

| Val val | Ok | No — output

The subjects performing regular commands identify themselves to the chip
via physical means. The actual authentication mechanism, as well as many other
implementation details, is confidential and beyond the scope of this article any-
way. Here we just declare an auxiliary function that yields the subject issuing a
(regular) command:

consts subject :: "message ⇒ sb"

primrec
"subject (Exec sb fn ) = sb"

"subject (Load sb fn v) = sb"
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ISM definition Having defined its various parameters, we can finally give the
theory section that specifies the SLE 66 model as an ISM:

ism SLE66 =

ports interface

inputs "{In}"

outputs "{Out}"

messages message

states
control ph init "P0"

data chip_data name "s" — The data state variable is called s. Note that
the initial data state is left unspecified and thus is arbitrary, which is a good example
of underspecification since its actual value is immaterial for the security properties we
are interested in.

transitions

— Rule R00 specifies execution of a test function f from the set FTest0 by the processor
manufacturer Pmf in the initial phase P0. If the test is successful then the SLE 66 enters
the next phase P1, answers with Ok, and disables the test functions FTest0. As specified
by the data theory subsection just above, the variable s denotes the current data state
of the ISM at the beginning of the transition. Thus, for example, fct s means the
functions currently available. The operator ‘b’ below restricts a partial function, in this
case valF s, to the given set, in this case the complement of FTest0.
Rule R00 is typical for interactions of the SLE 66 in the sense that a single input triggers
a single output. Note that the direct relation of input and output is expressed easily
using ISMs, whereas using IOAs, two transitions would be required whose relation
would be cumbersome to express and to use during verification.

R00: P0 → P1

pre "f ∈ fct s∩FTest0", "positive (output f s)"

in In "[Exec Pmf f]"

out Out "[Ok]"

post valF := "valF sb(-FTest0)"
— Rule R01 is analogous to R00, but specifies that if the test function f is from FTest1

rather than FTest0 then phase P1 is skipped and the chip enters P2 immediately,
disabling all test functions FTest :

R01: P0 → P2

pre "f ∈ fct s∩FTest1", "positive (output f s)"

in In "[Exec Pmf f]"

out Out "[Ok]"

post valF := "valF sb(-FTest)"
— If in P0 a test function gives a negative result then the chip enters the Error phase
and the output is No :

R02: P0 → Error

pre "f ∈ fct s∩FTest0", "¬positive (output f s)"

in In "[Exec Pmf f]"

out Out "[No]"

— Any other function call issued by the processor manufacturer in P0 has the standard
consequences: The function result is output and the data state changed (according to
the semantics of the function which is not further specfied). Note that by the form of
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postcondition used, the whole data state (consisting of valF and valD here) is replaced
by the given value: the denotation of change f s.
R03: P0 → P0

pre "f ∈ fct s - FTest"

in In "[Exec Pmf f]"

out Out "[Val (output f s)]"

post "change f s"

— In all remaining cases for phase 0, the attempted function execution is ignored and
the output is No :

R04: P0 → P0

pre "sb 6= Pmf ∨ f /∈ fct s"

in In "[Exec sb f]"

out Out "[No]"

— This ends the specifications of transitions originating in P0.

The specifications of transitions originating in P1 are fully analogous to the rules R00,
R02, R03, and R04, just replacing P0 by P1, P1 by P2, and FTest0 by FTest1 :

R11: P1 → P2

pre "f ∈ fct s∩FTest1", "positive (output f s)"

in In "[Exec Pmf f]"

out Out "[Ok]"

post valF := "valF sb(-FTest1)"
R12: P1 → Error

pre "f ∈ fct s∩FTest1", "¬positive (output f s)"

in In "[Exec Pmf f]"

out Out "[No]"

R13: P1 → P1

pre "f ∈ fct s - FTest1"

in In "[Exec Pmf f]"

out Out "[Val (output f s)]"

post "change f s"

R14: P1 → P1

pre "sb 6= Pmf ∨ f /∈ fct s"

in In "[Exec sb f]"

out Out "[No]"

— The rules R21 and R22 specify function calls in P2 analogously to R03 and R04,
except that any subject is allowed to issue them:

R21: P2 → P2

pre "f ∈ fct s"

in In "[Exec sb f]"

out Out "[Val (output f s)]"

post "change f s"

R22: P2 → P2

pre "f /∈ fct s"

in In "[Exec sb f]"

out Out "[No]"

— In the Error phase, the only function that may be called is chip identification,
yielding the serial number SN. All other cases yield No :
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R31: Error → Error

pre "f_SN ∈ fct s"

in In "[Exec sb f_SN]"

out Out "[Val SN]"

R32: Error → Error

pre "f /∈ fct s∩{f_SN}"
in In "[Exec sb f]"

out Out "[No]"

— The rules R41 and R42 specify the behavior of the Load operation, which is allowed
only for the processor manufacturer and only in the upload phase P1. If allowed, valF
is updated at the position f with the new function value v.
In contrast to the original LKW model [LKW00], the Load operation may upload
not only non-security-relevant functions but also functions of the application security
domain (as long as no such function of the same name is already present).

R41: P1 → P1

pre "f ∈ F_NSec ∪ (F_ASec - fct s)"

in In "[Load Pmf f v]"

out Out "[Ok]"

post valF := "valF s(f 7→v)"

R42: ph → ph

pre "f /∈ F_NSec ∪ (F_ASec - fct s) ∨ sb 6= Pmf ∨ ph 6= P1"

in In "[Load sb f v]"

out Out "[No]"

— Note that the rule R42 is generic in the sense that it applies to more than one control
state of the ISM, namely all phases except P1.

— The rules R51 thru R53 specify the possible reactions of the chip to attacks, modeled
by the Spy operation. If the attacker attempts to read a non-secret object whose name
is on and the chip is not in the Error phase, the access may be granted, yielding the
desired value (if any):

R51: ph → ph

pre "on /∈ Sec", "ph 6= Error"

in In "[Spy on]"

out Out "case val s on of None ⇒ [] | Some v ⇒ [Val v]"

— Rule R52 specifies the typical reaction of the SLE 66 upon attacks trying to read
a secret object while tampering with the chip: it may be unable to prevent that the
desired value is output, but in any case it reaches the Error phase from which no
further secrets may be obtained, as specified by the rules R31, R32, and R53.

R52: ph → Error

pre "on ∈ Sec", "v ∈ {[],[Val (the (val s on))]}", "ph 6= Error"

in In "[Spy on]"

out Out "v"

post "any"

— Note that R52 describes two sorts of nondeterminism: v denotes either the empty
output or the singleton output giving the desired value, and the attack may corrupt
the function and data stores arbitrarily.
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There are also cases where the chip can resist an attack without any damage and
without any leakage of secrets, such that there is no need to enter the Error phase:

R52’:ph → ph

pre "on ∈ Sec", "ph 6= Error"

in In "[Spy on]"

out Out "[]"

— If the chip is already in the Error phase, no further secrets can be obtained. The
chip state may be corrupted further, but it makes sure that it stays locked in the Error
phase:

R53: Error → Error

in In "[Spy on]"

out Out "[]"

post "any"

As expressed by the rules R52 and R53, the attacker may obtain (the repre-
sentation of) at most one secret object from the chip memory. It is interesting
to observe that the leakage of one item is harmless because all data stored on
the chip is encrypted. There are two cases to consider:

– The secret obtained is the de-/encryption key itself, which is not helpful to
the attacker because no further data item, in particular none encrypted with
the key, can be obtained.

– The secret obtained is an encrypted value, which is not helpful because the
attacker cannot any more obtain the decryption key.

Obviously, sophisticated techniques are required to implement the specified re-
action to physical attacks modeled by the Spy operation.

ISM runs The SLE 66 ISM just defined models the static interface of the chip
as well as all possible single state transitions that it can perform. In order to
describe the overall behavior of the chip during its life-cycle, we can refer to the
notions that our Isabelle implementation provides for ISMs in general:

types
SLE66_trans = "(unit, interface, message, SLE66_state) trans"

constdefs
Trans :: "SLE66_trans set" — the set of all possible transitions
"Trans ≡ trans SLE66.ism"

TRuns :: "(SLE66_trans list) set" — all possible transition sequences
"TRuns ≡ truns SLE66.ism"

Runs :: "(SLE66_state list) set" — all possible sequences of states

"Runs ≡ runs SLE66.ism"

This concludes the system model of the SLE 66.
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4.5 Properties

The second part of the SLE 66 security model deals with the security properties
derivable from the system model.

Security Objectives In the (confidential8) original security requirements spec-
ification by Infineon, the security objectives for the SLE 66 had been stated as
follows.

SO1. “The hardware must be protected against unauthorised disclosure of se-
curity enforcing functionality.”

SO2. “The hardware must be protected against unauthorised modification of
security enforcing functions.”

SO3. “The information stored in the processor’s memory components must be
protected against unauthorised access.”

SO4. “The information stored in the processor’s memory components must be
protected against unauthorised modification.”

SO5. “It may not occur that test functions are executed in an unauthorised
way.”

Later, an additional requirement concerning the confidentialiy and integrity of
Smartcard Embedded Software, which is not part of the security enforcing func-
tionality, has been added [AHIP01, §4.1].

Having formally defined the SLE 66 system model, these informal statements
can now be expressed formally as predicates on the system behavior, describing
unambiguously and in detail which states may be reached under which circum-
stances, which data may be modified, and which output may appear on the
output channel.

After formalizing the security objectives, it is natural to ask if the chip be-
havior, as specified in the system model, actually fulfills these requirements.
The corresponding proofs have been conducted first using pen and paper, as
reported in [LKW00]. Within the ISM framework, we meanwhile have verified
these properties even mechanically using Isabelle, discovering two major flaws
that will be reported in this subsection. Below we give all the required auxiliary
definitions, the most important lemmata, and all theorems, together with an
abstract informal description of the machine-checked proofs.

Model Assumptions Due to the abstract specification style where e.g. the
semantics of parts of the chip functionality is not fully specified, it turns out
that in order to prove the properties, a few general axioms that augment the
system model are required. The first one of them asserts that security-relevant
functions do not modify security-relevant functions:

Axiom1: "f∈fct s∩F_Sec =⇒ valF (change f s)bF_Sec = valF sbF_Sec"
8 quotations with permission.
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In comparison to the version of this axiom in the original model, the scope of
functions f has been extended from “initially available” to “security-relevant”,
reflecting the changes to rule R41. Part of the lemmas as well as the formalized
security objective FSO21 change accordingly.

The second axiom is very similar, stating that also non-security-relevant func-
tions do not modify security-relevant functions:

Axiom2: "f∈fct s∩F_NSec =⇒ valF (change f s)bF_Sec = valF sbF_Sec"

In order to formalize the security objective SO1 and Axiom3, we define the
set ValF_Sec r holding all code of security-relevant functions in a given run (i.e.,
sequence of states) r.

constdefs
ValF_Sec :: "SLE66_state list ⇒ val set"

"ValF_Sec r ≡
⋃

{ran (valF sbF_Sec) |ph s. (ph,s) ∈ set r}"

The third (and last) axiom introduced in the LKW model states that in
phase 2, a function cannot reveal (by intentional “guessing” or by accident)
any members of ValF_Sec r. This rather self-evident requirement is needed for
technical reasons in the proof of SO1.

Axiom3: " [[r∈Runs; (P2,s)∈set r; f∈fct s ]]=⇒ output f s /∈ValF_Sec r"

A notational remark is in order here: in Isabelle formualas, multiple premises
are bracketed using ‘[[’ and ‘]]’ and separated using ‘; ’.

When machine-checking the proofs contained in [LKW00] with Isabelle, we
noticed that a fourth axiom was missing that makes an implicit but important
assumption explicit: if a function object may be referenced in two (different)
ways and one of them declares the function to be security-relevant, the other
has to do the same.

Axiom4: " [[r ∈ Runs;

(ph, s) ∈ set r; (ph’, s’) ∈ set r;

val s n = Some v; val s’ n’ = Some v;

n ∈ Sec ]] =⇒ n’ ∈ Sec"

Such experience of missing cricial assumptions demonstrates how important
machine support is when conducting formal analysis.

Theorems Finally, we translate the five informal security objectives to Isabelle
formulas and prove them within the system. It is instructive to compare the
formal versions of the security objectives FSOx below with the informal ones,
SOx, given above.

The formalization of SO1, called FSO1, states that in any sequence ts of
transitions performed by the chip, if the chip outputs any value v representing
the code of any security-relevant function during its hitherto life, then the error
state is entered or the output was in response to a function execution request
by the processor manufacturer:
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theorem FSO1: " [[ts ∈ TRuns; ((p,(ph,s)),c,(p’,(ph’,s’))) ∈ set ts;

p’ Out = [Val v]; v ∈ ValF_Sec (truns2runs ts) ]] =⇒
ph’ = Error ∨ (∃ fn. p In = [Exec Pmf fn])"

The proof of FSO1 proceeds by unfolding some definitions, e.g. of the SLE 66
ISM, applying properties of auxiliary concepts like truns2runs, and a case split
on all possible transitions. Isabelle can solve most of the cases automatically
(with straightforward term rewriting and purely predicate-logical reasoning),
except for two: the case of rule R21 is handled using Axiom3, and for R51 we
rely on the property " [[r ∈ Runs; (ph, s) ∈ set r; v ∈ ValF_Sec r; val s n

= Some v ]] =⇒ n ∈ Sec" which in turn relies on Axiom4.
A more elaborate formalization of SO1 and SO3 taking into account also

indirect and partial information flow is motivated and sketched in [Ohe04].
Like in the original LKW model, the translation of SO2 splits into two parts.

FSO21’ states that for any (even unreachable) transition not ending in the error
phase, if a security-relevant function g is present in both the pre-state and the
post-state, the code associated with it stays the same:

theorem FSO21’: " [[((p,(ph,s)),c,(p’,(ph’,s’)))∈Trans; ph’ 6= Error;

g ∈ fct s∩fct s’∩F_Sec ]] =⇒ valF s’ g = valF s g"
This property is a generalization of the original FSO21, reflecting the exten-

sions made to the Load operation in rule R41: Here we do not compare the initial
and current value of g but the previous and current one, which takes into account
also functions added in the meantime.

The proof of this property is — as usual — by case distinction over all possible
transitions. Most cases are trivial except for those where function execution may
change the stored objects, which are described by the rules R03, R13, and R21.
Here an argumentation about the invariance of security-relevant functions g is
needed, which follows easily from Axiom1 and Axiom2.

Similarly to FSO21’, FSO22 states that for any transition within the same
phase that is not the error phase, the set of existing security-relevant functions
is non-decreasing:

theorem FSO22: " [[((p,(ph,s)),c,(p’,(ph’,s’)))∈Trans; ph’ 6= Error;

ph = ph’ ]] =⇒ fct s∩F_Sec ⊆ fct s’∩F_Sec"
Not surprisingly, the proof of this property is completely analougous.
FSO3 states that if the attacker obtains a result trying to get hold of a security-

relevant data object on, then the chip enters the error phase:

theorem FSO3:" [[((p,(ph,s)),c,(p’,(ph’,s’)))∈Trans; p In = [Spy on];

on ∈ Sec; p’ Out 6= [] ]] =⇒ ph’ = Error"

The proof is done simply by case distinction.
FSO4 states that any transition not entering the error phase but changing the

state does this in a well-behaved way: s’ is derived from s via the desired effect
of executing an existing function, or there is a phase change where only the test
functions may be modified, or only a single function f is changed due to a Load

operation:
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theorem FSO4:

" [[((p,(ph,s)),c,(p’,(ph’,s’))) ∈ Trans; ph’ 6= Error ]] =⇒
s’ = s ∨
(∃ sb f . p In = [Exec sb f ] ∧ f ∈ fct s ∧ s’ = change f s) ∨
(ph’ 6=ph ∧ valD s’ = valD s ∧ valF s’b(-FTest) = valF sb(-FTest))∨
(∃ sb f v. p In = [Load sb f v] ∧

valD s’ = valD s ∧ valF s’b(-{f} ) = valF sb(-{f} ))"

The proof is also straightforward by case distinction.
A second omission of the LKW model was that in the proof of the security

objective FSO5 an argumentation about the accessibility of certain functions was
not given in a rigorous way. We fix this by introducing an auxiliary property
(where, as typical with invariants, finding the appropriate one is the main chal-
lenge) and proving it to be an invariant of the ISM. The invariant states that in
phase 1, the test functions from FTest0 have been disabled, and in phase 2, all
test functions have been disabled:

constdefs
no_FTest_invariant :: "SLE66_state ⇒ bool"

"no_FTest_invariant ≡ λ(ph,s).

∀ f ∈ fct s. (ph = P1 −→ f /∈ FTest0) ∧ (ph = P2 −→ f /∈ FTest)"

When proving that the invariant holds, 14 of the 19 cases are trivial, and
the remaining ones require simple properties of the set FTest, and two of them
require additionally Axiom1 and Axiom2. The invariant implies

lemma P2_no_FTest:

" [[(P2,s) ∈ reach SLE66.ism; f ∈ fct s ]] =⇒ f /∈ FTest"

Wxploiting this property for the case of rule R21, we can prove FSO5 in the
usual way. This theorem states that in any sequence of transitions performed
by the chip, any attempt to execute a test function not issued by the processor
manufacturer is refused:

theorem FSO5: " [[ts ∈ TRuns; ((p,(ph,s)),c,(p’,(ph’,s’))) ∈ set ts;

p In = [Exec sb f]; f ∈ FTest ]] =⇒
sb = Pmf ∨ s’ = s ∧ p’ Out = [No]"

The Isabelle proofs of all six theorems formalizing the security objectives and
the two lemmas required are well supported by Isabelle: each of them takes just
a few steps, about half of which are automatic.

end

This finishes our detailed presentation of the SLE 66 case study. It demon-
strates that the ISM approach can be fruitfully applied to both model and prove
the security properties of state transition systems. The use of mechanical type
checks and theorem proving system ensures a level of accuracy hardly reachable
in a pen-and-paper analysis.
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5 Needham-Schroeder Public-Key Protocol

In contrast to the high-level requirements analysis of the rather state-oriented
SLE 66 model described in the previous section, we now turn to a more low-level
analysis of a communication-oriented system. Our aim is to demonstrate that
the ISM approach is capable of handling such quite different systems in a both
rigorous and elegant way as well.

As a typical example for such a distributed system, we take Lowe’s fix of
the Needham-Schroeder public-key authentication protocol [Low96], which we call
NSL. The emphasis here is not to provide new insights to the protocol, but to
use a well-known benchmark system that makes our approach easy to compare
with many other approaches that have been used to model (essentially) the same
system.

We base our ISM model on the formalization by Paulson [Pau98]. His so-
called “inductive approach” is tailored to semi-automated verification of cryp-
tographic protocols. Its great advantage is a high degree of automation, due to
abstraction to the core semantics of the protocols: event traces. On the other
hand, this makes both the models and the properties at least cumbersome to
express: state information is implicit, yet often it has to be referred to, which
is done by repeating suitable parts of the event history and sometimes even by
introducing auxiliary events.

5.1 AutoFocus Diagrams

As usual, our model of the NSL system consists of an agent called Alice aim-
ing to establish an authenticated session with another agent called Bob in the
presence of an Intruder according to the Dolev-Yao attacker model [DY83]. As

Fig. 6. NSL System Structure Diagram
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will be motivated in §5.2, we furthermore introduce a server ISM called NGen
that generates nonces for all honest agents. The corresponding system structure
diagram in Figure 6 shows the four components with their data state (reflecting
the expectations of the two agents, the set of messages the intruder knows of,
and the set of already used nonces, respectively) and the named connections
between them.

Even if sometimes neglected, agents involved in communication protocols do
have state: their current expectations and knowledge. This is made explicit in
a convenient way by describing their interaction behavior with state transition
diagrams. Figure 7 shows the three states of the agent Alice and the transitions
between them, which have the general format guard : inputs : outputs :
assignments.

Fig. 7. NSL State Transition Diagram: Alice

In the initial state, Alice decides which agent B she wants to talk to and
sends the corresponding request consisting of a fresh nonce nA (which she has
obtained from the nonce server via her port NA) and her identity Alice, en-
crypted under the public key of the intended receiver. This message is actually
sent to the port AI of the intruder. Alice remembers her intended peer in the
local variable Apeer and the nonce she has used in the variable AnA. In the next
state she awaits a response from the prospective peer, decrypts it and checks its
authenticity by comparing the nonce value nA and agent name B with the corre-
sponding items in her memory. Only if the decryption and the two comparisons
are successful, the transition to her final state actually takes place, sending an
appropriate acknowledgment to her peer and storing the nonce nB just received
in her variable AnB. The third state represents (hopefully) successful session es-
tablishment where all essential parameters of the session may be referred to by
the local variables of Alice.

From the example of Alice’s transitions, one realizes that ISM control state
information is a natural way of fixing the order of protocol steps.

Bob’s state transitions are analogous and thus not shown here.
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The transitions of the Intruder are quite different from the regular protocol
participants: it stores all messages received on its ports AI and BI in the local
variable known and can send any message derivable from its current knowledge
(by analyzing the messages contained in the set known, utilizing the decryption
keys it knows of, and synthesizing messages from the resulting pieces) to the
ports IA and IB, as depicted by Figure 8. The figure reveals a weakness of

Fig. 8. NSL State Transition Diagram: Intruder

modeling with AutoFocus: there is a lot of redundancy among each of the two
pairs of transitions (where the difference is just in the port names used), which
can be avoided in the Isabelle representation by using generic transitions (where
the port used for input or output is a variable that may hold either of the two
possible values, as shown below).

Note that the intruder may take part in any number of sessions simultane-
ously. If the analysis needs to include the possibility that a regular agent takes
part in more than one protocol run simultaneously, this can be modeled by mul-
tiple instantiation of the respective agent — under the assumption that from
that agent’s perspective the protocol runs are independent of each other.

The transition diagram of NGen is similar to the one of the intruder, except
that there are no transitions with input.

5.2 Isabelle Definition

This section gives parts of our Isabelle representation of NSL. Refer to §3.4 for the
details of ISM sections. We do not show the definitions of the various state and
message components here since they are straightforward and analogous to the
SLE66 model. Moreover, we give only the ISM definitions of those components
for which we have not already given an AutoFocus STD above.

ism Bob =
ports channel

inputs "{NB,IB}"

outputs "{BI}"

messages msg

states state — this is the sum of the four state types of the system com-
ponents, required because of the type problem mentioned in §2.1

control B_control init "Idle"

data B_data init "B0"
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transitions
Resp: Idle → Resp

in NB "[Nonce nB]",
IB "[Crypt (pubK Bob) {|Nonce nA, Agent A |}]"

out BI "[Crypt (pubK A) {|Nonce nA, Nonce nB, Agent Bob |}]"
post "Bpeer := A, BnA := nA, BnB := nB"

Ack’: Resp → Conn

pre "nB = BnB s"

in IB "[Crypt (pubK Bob) (Nonce nB)]"

Note that Bob’s first transition Resp takes two inputs, from the nonce generator
and the intruder, and produces one output. If we modeled this transition using
IOAs, we would have needed three transitions with intermediate states. The
precondition of transition Ack’ could have been made implicit by moving the
comparison as a pattern to the in part, yet we make it explicit in order to
emphasize its importance. The local variable BnB is used to store the value of
the nonce expected, while the other two variables express Bob’s view to whom
he is connected in which session. In Paulson’s model, this state information is
implicit in the event trace.

Modeling the freshness of nonces is an interesting problem, for which we are
aware of essentially four solutions, each with their pros and cons.

– In Paulson’s model [Pau98], nonces are generated non-deterministically un-
der the side condition that they do not already appear in the current mes-
sage/event history. This criterion refers to the semantic and system-global
notion of event traces — something not available from the (local) perspective
of ISMs.

– One could combine local and global freshness conditions and let each agent
generate its own nonces: by producing fresh values locally and combining
them with the globally unique agent identifier. The drawback of this solution
is that each nonce issuer has to implement the mechanism just described.

– One could enforce global freshness by adding an axiom restricting system
runs in the desired way. We prefer a more constructive approach here and
derive the required freshness property as a lemma.

– Our solution is to introduce a nonce server component called NGen that
performs the generation of nonces for all agents in a centralized fashion. In
this way we can ensure global freshness with a constructive local criterion.

A further motivation to us for selecting the fourth solution just mentioned was
that it makes the communication patterns of the agents more interesting be-
cause Bob has a transitions that inputs from two sources simultaneously. Note
that NGen is just a modeling aid and thus its correct interplay with the agents,
including authentication issues, does not need to be analyzed.

The ISM definition of NGen is rather simple because NGen does not require
control state information and its local state consists only of the single variable
storing the set of all nonces that already have been used. Therefore, we may
identify the whole local state with this variable and call it used, eliminating
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the need to define a record type and use the corresponding record selectors and
updates.

ism NGen =
ports channel

inputs "{}"

outputs "{NA,NB}"

messages msg

states state

data "nonce set" init "N0" name "used"

transitions
Cackle:

pre "ch ∈ {NA, NB}", "n /∈ used"

out ch "[Nonce n]"

post "insert n (used)"

Note that the output port ch is (non-deterministically) selected from the set
of two distinct names, which ensures the exclusive use of each nonce.

The family of all four ISMs is composed in parallel to form the NSL system.
It is easy to prove that this ISM family is closed and all its members, as well as
their parallel composition, are well-formed.

5.3 Properties

Properties of protocols specified with ISMs may be expressed with reference
to both the state of agents and the messages exchanged. In the case of NSL,
the most interesting property is authentication of Alice to Bob (actually, even
session agreement [Low97] from Bob’s view), which we formulate as

[[Alice /∈ bad; Bob /∈ bad; (b,s)#cs ∈ NSL_Runs ]] =⇒
(∃ nA. Bob_state s = (Conn, (|Bpeer=Alice, BnA=nA, BnB=nB |))) −→
(∃ (b’,s’) ∈ set cs.

(∃ nA. Alice_state s’ = (Wait, (|Apeer=Bob , AnA=nA, AnB=nB |))))

This can be quite intuitively read as: if in the current state s of the system Bob
believes to be connected to Alice within a session identified by the nonce nB
then there is an earlier state s’ where Alice was in the waiting state referring
to the same nonce nB after initiating a connection with Bob.

It is interesting to compare the above formulation with Paulson’s9:
[[A /∈ bad; B /∈ bad; evs ∈ ns_public;

Crypt (pubK B) (Nonce NB) ∈ parts (spies evs);

Says B A (Crypt (pubK A) {|Nonce NA,Nonce NB,Agent B |}) ∈ set evs

]] =⇒
Says A B (Crypt (pubK B) {|Nonce NA,Agent A |}) ∈ set evs

9 http://isabelle.in.tum.de/library/HOL/Auth/NS_Public.html
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This statement is necessarily more indirect than ours since the beliefs of the
agents have to be coded by elements of the event history. At least in this case,
all messages of a protocol run have to be referred to. Note further that this
formulation makes stronger assumptions than ours because an agreement on the
value of the nonce NB is involved.

Due to the extra detail concerning agent state and the input buffers (which
are not actually required for the NSL protocol), the proofs within the ISM ap-
proach are more painful and require more lemmas about intermediate states of
protocol runs than Paulson’s inductive proofs. On the other hand, the semi-
automatic proofs within the ISM approach probably scale better.

There are about a dozen lemmas proved by rule induction, most of which deal
with the freshness and usage of nonces generated by NGen. The main theorem is
proved employing a variant of Schneider’s rank function approach [Sch97], which
we describe in detail in [Ohe02, §3].

6 Conclusion

ISMs are designed as high-level I/O automata, with additional structure and
communication facilities. Like IOAs, ISMs are suitable for describing typical
state-based communication systems relevant for security analysis, where ISM
provide increased simplicity wrt. specifying component interaction via buffered
communication and means to directly relate input and output actions within a
single transition.

We have shown that the ISM approach is equally applicable to a variety of
security analysis tasks, ranging from high-level security modeling and require-
ments analysis, typically showing less system structure but increased complexity
of state transitions, to security analysis of distributed systems including crypto-
graphic protocols, likely to exhibit advanced system structuring. The examples
explicate the importance of a fully formalized strategy and mechanized proofs.
In particular, the LKW model has been significantly improved by identifying
hidden assumptions and completing sloppy argumentation.

The ISM approach offers graphic representation by means of AutoFocus Sys-
tem Structure Diagrams and State Transitions Diagrams. A tool program closely
relates these graphical development and documentation capabilities with the for-
mal system specification and verification capabilities of the mechanical theorem
prover Isabelle/HOL.

Further work on ISMs includes the extension of the proof support in the ISM
level concerning e.g. refinement and the provision of a specification language
based on temporal logic. Additional AutoFocus capabilities may be made avail-
able, including further systems views like event traces and simulation, as well as
test case generation.

In brief, the Interacting State Machines approach turns out to offer good
support for formal security analysis in the way required within an industrial
environment, meeting the goals stated in §1.2.
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